T-DNA integration in plants results from polymerase-θ-mediated DNA repair (2024)

References

  1. Gelvin, S. B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu. Rev. Phytopathol. 48, 45–68 (2010).

    Article CAS Google Scholar

  2. Salomon, S. & Puchta, H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17, 6086–6095 (1998).

    Article CAS Google Scholar

  3. Gallego, M. E., Bleuyard, J.-Y., Daoudal-Cotterell, S., Jallut, N. & White, C. I. Ku80 plays a role in non-hom*ologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J. 35, 557–565 (2003).

    Article CAS Google Scholar

  4. Friesner, J. & Britt, A. B. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J. 34, 427–440 (2003).

    Article CAS Google Scholar

  5. Van Attikum, H. et al. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res. 31, 4247–4255 (2003).

    Article CAS Google Scholar

  6. Mestiri, I., Norre, F., Gallego, M. E. & White, C. I. Multiple host-cell recombination pathways act in Agrobacterium mediated transformation of plant cells. Plant J. 77, 511–520 (2014).

    Article CAS Google Scholar

  7. Park, S.-Y. et al. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-hom*ologous end-joining proteins. Plant J. 81, 934–946 (2015).

    Article CAS Google Scholar

  8. Windels, P., De Buck, S., Van Bockstaele, E., De Loose, M. & Depicker, A. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol. 133, 2061–2068 (2003).

    Article CAS Google Scholar

  9. Kleinboelting, N. et al. The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Mol. Plant 8, 1651–1664 (2015).

    Article CAS Google Scholar

  10. Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet. 6, e1001005 (2010).

    Article Google Scholar

  11. Roerink, S. F., van Schendel, R. & Tijsterman, M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res. 24, 954–962 (2014).

    Article CAS Google Scholar

  12. Koole, W. et al. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 5, 3216 (2014).

    Article Google Scholar

  13. Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article CAS Google Scholar

  14. Yousefzadeh, M. J. et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 10, e1004654 (2014).

    Article Google Scholar

  15. Inagaki, S. et al. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell 18, 879–892 (2006).

    Article CAS Google Scholar

  16. Desfeux, C., Clough, S. J. & Bent, A. F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123, 895–904 (2000).

    Article CAS Google Scholar

  17. Huang, S., An, Y. Q., McDowell, J. M., McKinney, E. C. & Meagher, R. B. The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol. Biol. 33, 125–139 (1997).

    Article CAS Google Scholar

  18. De Buck, S., Podevin, N., Nolf, J., Jacobs, A. & Depicker, A. The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J. 60, 134–145 (2009).

    Article CAS Google Scholar

  19. Kent, T., Chandramouly, G., McDevitt, S. M., Ozdemir, A. Y. & Pomerantz, R. T. Mechanism of microhom*ology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 22, 230–237 (2015).

    Article CAS Google Scholar

  20. Köhler, F., Cardon, G., Pöhlman, M., Gill, R. & Schieder, O. Enhancement of transformation rates in higher plants by low-dose irradiation: are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Mol. Biol. 12, 189–199 (1989).

    Article Google Scholar

  21. Manova, V. & Gruszka, D. DNA damage and repair in plants – from models to crops. Front. Plant Sci. 6, 885 (2015).

    Article Google Scholar

  22. Gallego, M. E. & White, C. I. DNA repair and recombination functions in Arabidopsis telomere maintenance. Chromosome Res. 13, 481–491 (2005).

    Article CAS Google Scholar

  23. Tzfira, T., Frankman, L. R., Vaidya, M. & Citovsky, V. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol. 133, 1011–1023 (2003).

    Article CAS Google Scholar

  24. Chilton, M. D. & Que, Q. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol. 133, 956–965 (2003).

    Article CAS Google Scholar

  25. Durrenberger, F., Crameri, A., Hohn, B. & Koukolikova-Nicola, Z. Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc. Natl Acad. Sci. USA. 86, 9154–9158 (1989).

    Article CAS Google Scholar

  26. Zhu, Q.-H., Ramm, K., Eamens, A. L., Dennis, E. S. & Upadhyaya, N. M. Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Sci. 171, 308–322 (2006).

    Article CAS Google Scholar

  27. Thomas, C. M. & Jones, J. D. Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence hom*ology in most integration events. Mol. Genet. Genomics 278, 411–420 (2007).

    Article CAS Google Scholar

  28. Oosumi, T., Ruiz-Rojas, J. J., Veilleux, R. E., Dickerman, A. & Shulaev, V. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca. Physiol. Plant. 140, 1–9 (2010).

    Article CAS Google Scholar

  29. Singer, K., Shiboleth, Y. M., Li, J. & Tzfira, T. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol. 160, 511–522 (2012).

    Article CAS Google Scholar

  30. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article Google Scholar

  31. Beijersbergen, A., Dulk-Ras, A. D., Schilperoort, R. A. & Hooykaas, P. J. Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256, 1324–1327 (1992).

    Article CAS Google Scholar

  32. Lazo, G. R., Stein, P. A. & Ludwig, R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnol. (NY) 9, 963–967 (1991).

    Article CAS Google Scholar

  33. De Pater, S., Pinas, J. E., Hooykaas, P. J. J. & van der Zaal, B. J. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol. J. 11, 510–515 (2013).

    Article CAS Google Scholar

  34. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article CAS Google Scholar

  35. Vergunst, A. C. et al. Virb/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000).

    Article CAS Google Scholar

  36. De Pater, S., Neuteboom, L. W., Pinas, J. E., Hooykaas, P. J. & van der Zaal, B. J. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol. J. 7, 821–835 (2009).

    Article CAS Google Scholar

  37. Liu, Y. G., Mitsukawa, N., Oosumi, T. & Whittier, R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463 (1995).

    Article CAS Google Scholar

Download references

T-DNA integration in plants results from polymerase-θ-mediated DNA repair (2024)
Top Articles
Latest Posts
Article information

Author: Jerrold Considine

Last Updated:

Views: 6501

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.